53 research outputs found

    Dark Nuclei I: Cosmology and Indirect Detection

    Get PDF
    In a companion paper (to be presented), lattice field theory methods are used to show that in two-color, two-flavor QCD there are stable nuclear states in the spectrum. As a commonly studied theory of composite dark matter, this motivates the consideration of possible nuclear physics in this and other composite dark sectors. In this work, early Universe cosmology and indirect detection signatures are explored for both symmetric and asymmetric dark matter, highlighting the unique features that arise from considerations of dark nuclei and associated dark nuclear processes. The present day dark matter abundance may be composed of dark nucleons and/or dark nuclei, where the latter are generated through it dark nucleosynthesis. For symmetric dark matter, indirect detection signatures are possible from annihilation, dark nucleosynthesis, and dark nuclear capture and we present a novel explanation of the galactic center gamma ray excess based on the latter. For asymmetric dark matter, dark nucleosynthesis may alter the capture of dark matter in stars, allowing for captured particles to be processed into nuclei and ejected from the star through dark nucleosynthesis in the core. Notably, dark nucleosynthesis realizes a novel mechanism for indirect detection signals of asymmetric dark matter from regions such as the galactic center, without having to rely on a symmetric dark matter component.Comment: 31 pages, 9 figure

    Aspects of hadron and instatnton physics in lattice quantum field theories

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 1997.Includes bibliographical references (p. 103-110).by Andrew Pochinsky.Ph.D

    Nucleon structure with pion mass down to 149 MeV

    Full text link
    We present isovector nucleon observables: the axial, tensor, and scalar charges and the Dirac radius. Using the BMW clover-improved Wilson action and pion masses as low as 149 MeV, we achieve good control over chiral extrapolation to the physical point. Our analysis is done using three different source-sink separations in order to identify excited-state effects, and we make use of the summation method to reduce their size.Comment: 7 pages, 5 figures. Talk presented at the 30th International Symposium on Lattice Field Theory (Lattice 2012), June 24-29, 2012, Cairns, Australi

    Dark nuclei. II. Nuclear spectroscopy in two-color QCD

    Get PDF
    We consider two-color QCD with two flavors of quarks as a possible theory of composite dark matter and use lattice field theory methods to investigate nuclear spectroscopy in the spin J = 0 and J = 1 multibaryon sectors. We find compelling evidence that J = 1 systems with baryon number B = 2,3 (and their mixed meson-baryon counterparts) are bound states—the analogues of nuclei in this theory. In addition, we estimate the σ-terms of the J = 0 and J = 1 single baryon states which are important for the coupling of the theory to scalar currents that may mediate interactions with the visible sector.Simons Foundation (Postdoctoral Fellowship)United States. Dept. of Energy (Early Career Research Award DE-SC0010495)Solomon Buchsbaum AT&T Research FundUnited States. Dept. of Energy (Grant DE-FG02-94ER40818

    Nucleon form factors with light Wilson quarks

    Get PDF
    We present nucleon observables - primarily isovector vector form factors - from calculations using 2+1 flavors of Wilson quarks. One ensemble is used for a dedicated high-precision study of excited-state effects using five source-sink separations between 0.7 and 1.6 fm. We also present results from a larger set of calculations that include an ensemble with pion mass 149 MeV and box size 5.6 fm, which nearly eliminates the uncertainty associated with extrapolation to the physical pion mass. The results show agreement with experiment for the vector form factors, which occurs only when excited-state contributions are reduced. Finally, we show results from a subset of ensembles that have pion mass 254 MeV with varying temporal and spatial box sizes, which we use for a controlled study of finite-volume effects and a test of the "mπL=4m_\pi L=4" rule of thumb.Comment: 7 pages, 3 figures. Talk presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), July 29-August 3, 2013, Mainz, German

    Computing the nucleon charge and axial radii directly at Q2=0Q^2=0 in lattice QCD

    Full text link
    We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at Q2=0Q^2=0. This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at Q2=0Q^2=0 and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. GEv(Q2)G^v_E(Q^2) and GMv(Q2)G_M^v(Q^2) for the case of the vector current and GPv(Q2)G_P^v(Q^2) and GAv(Q2)G_A^v(Q^2) for the axial current, at multiple Q2Q^2 values followed by zz-expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.Comment: 16 pages, 7 figure

    High-precision calculation of the strange nucleon electromagnetic form factors

    Get PDF
    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GEsG_E^s and GMsG_M^s in the kinematic range 0≤Q2≲1.2 GeV20 \leq Q^2 \lesssim 1.2\: {\rm GeV}^2. For the first time, both GEsG_E^s and GMsG_M^s are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecedented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the zz-expansion and determine the strange electric and magnetic radii and magnetic moment. We compare our results to parity-violating electron-proton scattering data and to other theoretical studies.Comment: 6 pages, 5 figures. v2: references adde
    • …
    corecore